54.2.38 problem 614

Internal problem ID [11912]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 614
Date solved : Tuesday, September 30, 2025 at 11:39:45 PM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(y)]`]]

\begin{align*} y^{\prime }&=\frac {x \left (a -1\right ) \left (a +1\right )}{y+F \left (\frac {y^{2}}{2}-\frac {a^{2} x^{2}}{2}+\frac {x^{2}}{2}\right ) a^{2}-F \left (\frac {y^{2}}{2}-\frac {a^{2} x^{2}}{2}+\frac {x^{2}}{2}\right )} \end{align*}
Maple. Time used: 0.174 (sec). Leaf size: 93
ode:=diff(y(x),x) = x*(a-1)*(a+1)/(y(x)+F(1/2*y(x)^2-1/2*a^2*x^2+1/2*x^2)*a^2-F(1/2*y(x)^2-1/2*a^2*x^2+1/2*x^2)); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \operatorname {RootOf}\left (F \left (\frac {1}{2} \textit {\_Z}^{2}-\frac {1}{2} a^{2} x^{2}+\frac {1}{2} x^{2}\right )\right ) \\ \frac {\int _{}^{-a^{2} x^{2}+x^{2}+y^{2}}\frac {1}{F \left (\frac {\textit {\_a}}{2}\right )}d \textit {\_a} +\left (2 a^{2}-2\right ) y-2 c_1 \,a^{4}+4 c_1 \,a^{2}-2 c_1}{2 a^{4}-4 a^{2}+2} &= 0 \\ \end{align*}
Mathematica. Time used: 0.193 (sec). Leaf size: 177
ode=D[y[x],x] == ((-1 + a)*(1 + a)*x)/(-F[x^2/2 - (a^2*x^2)/2 + y[x]^2/2] + a^2*F[x^2/2 - (a^2*x^2)/2 + y[x]^2/2] + y[x]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{y(x)}\left (\frac {K[2]}{(a-1) (a+1) F\left (-\frac {1}{2} a^2 x^2+\frac {x^2}{2}+\frac {K[2]^2}{2}\right )}-\int _1^x\frac {K[1] K[2] F''\left (-\frac {1}{2} a^2 K[1]^2+\frac {K[1]^2}{2}+\frac {K[2]^2}{2}\right )}{F\left (-\frac {1}{2} a^2 K[1]^2+\frac {K[1]^2}{2}+\frac {K[2]^2}{2}\right )^2}dK[1]+1\right )dK[2]+\int _1^x-\frac {K[1]}{F\left (-\frac {1}{2} a^2 K[1]^2+\frac {K[1]^2}{2}+\frac {y(x)^2}{2}\right )}dK[1]=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
F = Function("F") 
ode = Eq(-x*(a - 1)*(a + 1)/(a**2*F(-a**2*x**2/2 + x**2/2 + y(x)**2/2) - F(-a**2*x**2/2 + x**2/2 + y(x)**2/2) + y(x)) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out