54.2.88 problem 664

Internal problem ID [11962]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 664
Date solved : Tuesday, September 30, 2025 at 11:48:52 PM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(x)]`]]

\begin{align*} y^{\prime }&=-\frac {x}{2}+1+x^{2} \sqrt {x^{2}-4 x +4 y} \end{align*}
Maple. Time used: 0.085 (sec). Leaf size: 25
ode:=diff(y(x),x) = -1/2*x+1+x^2*(x^2-4*x+4*y(x))^(1/2); 
dsolve(ode,y(x), singsol=all);
 
\[ c_{1} +\frac {2 x^{3}}{3}-\sqrt {x^{2}-4 x +4 y} = 0 \]
Mathematica. Time used: 0.268 (sec). Leaf size: 34
ode=D[y[x],x] == 1 - x/2 + x^2*Sqrt[-4*x + x^2 + 4*y[x]]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {x^6}{9}-\frac {2 c_1 x^3}{3}-\frac {x^2}{4}+x+c_1{}^2 \end{align*}
Sympy. Time used: 5.213 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2*sqrt(x**2 - 4*x + 4*y(x)) + x/2 + Derivative(y(x), x) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = - \frac {x^{2}}{4} + x + \frac {\left (C_{1} + x^{3}\right )^{2}}{9} \]