Internal
problem
ID
[11963]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
665
Date
solved
:
Friday, October 03, 2025 at 02:54:22 AM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)]`]]
ode:=diff(y(x),x) = -1/2*(a^(1/2)*x^4+a^(1/2)*x^3-2*(a*x^4+8*y(x))^(1/2))*a^(1/2)/(1+x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == -1/2*(Sqrt[a]*(Sqrt[a]*x^3 + Sqrt[a]*x^4 - 2*Sqrt[a*x^4 + 8*y[x]]))/(1 + x); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(sqrt(a)*(sqrt(a)*x**4 + sqrt(a)*x**3 - 2*sqrt(a*x**4 + 8*y(x)))/(2*x + 2) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)