54.2.218 problem 795

Internal problem ID [12092]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 795
Date solved : Wednesday, October 01, 2025 at 12:27:04 AM
CAS classification : [[_homogeneous, `class C`], _rational, _Abel]

\begin{align*} y^{\prime }&=\frac {x^{3}+3 a \,x^{2}+3 a^{2} x +a^{3}+x y^{2}+a y^{2}+y^{3}}{\left (x +a \right )^{3}} \end{align*}
Maple. Time used: 0.005 (sec). Leaf size: 37
ode:=diff(y(x),x) = (x^3+3*x^2*a+3*a^2*x+a^3+x*y(x)^2+a*y(x)^2+y(x)^3)/(x+a)^3; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\operatorname {RootOf}\left (-\int _{}^{\textit {\_Z}}\frac {1}{\textit {\_a}^{3}-\textit {\_a}^{2}-\textit {\_a} -1}d \textit {\_a} +\ln \left (x +a \right )+c_1 \right ) \left (x +a \right ) \]
Mathematica. Time used: 0.232 (sec). Leaf size: 92
ode=D[y[x],x] == (a^3 + 3*a^2*x + 3*a*x^2 + x^3 + a*y[x]^2 + x*y[x]^2 + y[x]^3)/(a + x)^3; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{\frac {\frac {3 y(x)}{(a+x)^3}+\frac {1}{(a+x)^2}}{\sqrt [3]{38} \sqrt [3]{\frac {1}{(a+x)^6}}}}\frac {1}{K[1]^3-\frac {6 \sqrt [3]{2} K[1]}{19^{2/3}}+1}dK[1]=\frac {1}{9} 38^{2/3} \left (\frac {1}{(a+x)^6}\right )^{2/3} (a+x)^4 \log (a+x)+c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - (a**3 + 3*a**2*x + 3*a*x**2 + a*y(x)**2 + x**3 + x*y(x)**2 + y(x)**3)/(a + x)**3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : argument of type Mul is not iterable