Internal
problem
ID
[12093]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
796
Date
solved
:
Sunday, October 12, 2025 at 02:15:43 AM
CAS
classification
:
[[_Abel, `2nd type`, `class C`]]
ode:=diff(y(x),x) = 1/3*y(x)^3*x*exp(3*x^2)/(3*exp(3/2*x^2)+exp(3/2*x^2)*y(x)+3*y(x))/exp(9/2*x^2); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (x*y[x]^3)/(3*E^((3*x^2)/2)*(3*E^((3*x^2)/2) + 3*y[x] + E^((3*x^2)/2)*y[x])); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*y(x)**3*exp(-3*x**2/2)/(3*y(x)*exp(3*x**2/2) + 9*y(x) + 9*exp(3*x**2/2)) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out