Internal
problem
ID
[12109]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
812
Date
solved
:
Sunday, October 12, 2025 at 02:18:21 AM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)]`]]
ode:=diff(y(x),x) = 1/2*x^2+(x^3-6*y(x))^(1/2)+x^2*(x^3-6*y(x))^(1/2)+x^3*(x^3-6*y(x))^(1/2); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == x^2/2 + Sqrt[x^3 - 6*y[x]] + x^2*Sqrt[x^3 - 6*y[x]] + x^3*Sqrt[x^3 - 6*y[x]]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**3*sqrt(x**3 - 6*y(x)) - x**2*sqrt(x**3 - 6*y(x)) - x**2/2 - sqrt(x**3 - 6*y(x)) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out