Internal
problem
ID
[12110]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
813
Date
solved
:
Sunday, October 12, 2025 at 02:19:06 AM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)]`]]
ode:=diff(y(x),x) = 1/2*(-a^(1/2)*x^3+2*(a*x^4+8*y(x))^(1/2)+2*x^2*(a*x^4+8*y(x))^(1/2)+2*x^3*(a*x^4+8*y(x))^(1/2))*a^(1/2); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (Sqrt[a]*(-(Sqrt[a]*x^3) + 2*Sqrt[a*x^4 + 8*y[x]] + 2*x^2*Sqrt[a*x^4 + 8*y[x]] + 2*x^3*Sqrt[a*x^4 + 8*y[x]]))/2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(-sqrt(a)*(-sqrt(a)*x**3 + 2*x**3*sqrt(a*x**4 + 8*y(x)) + 2*x**2*sqrt(a*x**4 + 8*y(x)) + 2*sqrt(a*x**4 + 8*y(x)))/2 + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out