1.4.2 problem 2

Internal problem ID [74]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 1. First order differential equations. Section 1.5 (linear equations). Problems at page 54
Problem number : 2
Date solved : Tuesday, September 30, 2025 at 03:42:33 AM
CAS classification : [[_linear, `class A`]]

\begin{align*} y^{\prime }-2 y&=3 \,{\mathrm e}^{2 x} \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \\ \end{align*}
Maple. Time used: 0.026 (sec). Leaf size: 11
ode:=diff(y(x),x)-2*y(x) = 3*exp(2*x); 
ic:=[y(0) = 0]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = 3 \,{\mathrm e}^{2 x} x \]
Mathematica. Time used: 0.025 (sec). Leaf size: 13
ode=D[y[x],x]-2*y[x]==3*Exp[2*x]; 
ic={y[0]==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to 3 e^{2 x} x \end{align*}
Sympy. Time used: 0.083 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*y(x) - 3*exp(2*x) + Derivative(y(x), x),0) 
ics = {y(0): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = 3 x e^{2 x} \]