Internal
problem
ID
[12229]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
934
Date
solved
:
Wednesday, October 01, 2025 at 01:15:16 AM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _Abel]
ode:=diff(y(x),x) = 1/2*x+1+y(x)^2+1/4*x^2*y(x)-x*y(x)-1/8*x^4+1/8*x^3+1/4*x^2+y(x)^3-3/4*x^2*y(x)^2-3/2*x*y(x)^2+3/16*y(x)*x^4+3/4*x^3*y(x)-1/64*x^6-3/32*x^5; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == 1 + x/2 + x^2/4 + x^3/8 - x^4/8 - (3*x^5)/32 - x^6/64 - x*y[x] + (x^2*y[x])/4 + (3*x^3*y[x])/4 + (3*x^4*y[x])/16 + y[x]^2 - (3*x*y[x]^2)/2 - (3*x^2*y[x]^2)/4 + y[x]^3; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**6/64 + 3*x**5/32 - 3*x**4*y(x)/16 + x**4/8 - 3*x**3*y(x)/4 - x**3/8 + 3*x**2*y(x)**2/4 - x**2*y(x)/4 - x**2/4 + 3*x*y(x)**2/2 + x*y(x) - x/2 - y(x)**3 - y(x)**2 + Derivative(y(x), x) - 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out