Internal
problem
ID
[12230]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
935
Date
solved
:
Wednesday, October 01, 2025 at 01:15:19 AM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _Abel]
ode:=diff(y(x),x) = -1/2*x+1+y(x)^2+7/2*x^2*y(x)-2*x*y(x)+13/16*x^4-3/2*x^3+x^2+y(x)^3+3/4*x^2*y(x)^2-3*x*y(x)^2+3/16*y(x)*x^4-3/2*x^3*y(x)+1/64*x^6-3/16*x^5; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == 1 - x/2 + x^2 - (3*x^3)/2 + (13*x^4)/16 - (3*x^5)/16 + x^6/64 - 2*x*y[x] + (7*x^2*y[x])/2 - (3*x^3*y[x])/2 + (3*x^4*y[x])/16 + y[x]^2 - 3*x*y[x]^2 + (3*x^2*y[x]^2)/4 + y[x]^3; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**6/64 + 3*x**5/16 - 3*x**4*y(x)/16 - 13*x**4/16 + 3*x**3*y(x)/2 + 3*x**3/2 - 3*x**2*y(x)**2/4 - 7*x**2*y(x)/2 - x**2 + 3*x*y(x)**2 + 2*x*y(x) + x/2 - y(x)**3 - y(x)**2 + Derivative(y(x), x) - 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)