Internal
problem
ID
[12247]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
952
Date
solved
:
Sunday, October 12, 2025 at 02:27:37 AM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]
ode:=diff(y(x),x) = -(-y(x)+(x^2+y(x)^2)^(1/2)*x^2-x*(x^2+y(x)^2)^(1/2)*y(x)+x^4*(x^2+y(x)^2)^(1/2)-x^3*(x^2+y(x)^2)^(1/2)*y(x)+x^5*(x^2+y(x)^2)^(1/2)-x^4*(x^2+y(x)^2)^(1/2)*y(x))/x; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (y[x] - x^2*Sqrt[x^2 + y[x]^2] - x^4*Sqrt[x^2 + y[x]^2] - x^5*Sqrt[x^2 + y[x]^2] + x*y[x]*Sqrt[x^2 + y[x]^2] + x^3*y[x]*Sqrt[x^2 + y[x]^2] + x^4*y[x]*Sqrt[x^2 + y[x]^2])/x; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) + (x**5*sqrt(x**2 + y(x)**2) - x**4*sqrt(x**2 + y(x)**2)*y(x) + x**4*sqrt(x**2 + y(x)**2) - x**3*sqrt(x**2 + y(x)**2)*y(x) + x**2*sqrt(x**2 + y(x)**2) - x*sqrt(x**2 + y(x)**2)*y(x) - y(x))/x,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out