Internal
problem
ID
[12248]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
953
Date
solved
:
Sunday, October 12, 2025 at 02:27:47 AM
CAS
classification
:
[NONE]
ode:=diff(y(x),x) = y(x)*(ln(x)+ln(y(x))-1+x*ln(x)^2+2*x*ln(y(x))*ln(x)+x*ln(y(x))^2+x^3*ln(x)^2+2*x^3*ln(y(x))*ln(x)+x^3*ln(y(x))^2+x^4*ln(x)^2+2*x^4*ln(y(x))*ln(x)+x^4*ln(y(x))^2)/x; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == ((-1 + Log[x] + x*Log[x]^2 + x^3*Log[x]^2 + x^4*Log[x]^2 + Log[y[x]] + 2*x*Log[x]*Log[y[x]] + 2*x^3*Log[x]*Log[y[x]] + 2*x^4*Log[x]*Log[y[x]] + x*Log[y[x]]^2 + x^3*Log[y[x]]^2 + x^4*Log[y[x]]^2)*y[x])/x; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (x**4*log(x)**2 + 2*x**4*log(x)*log(y(x)) + x**4*log(y(x))**2 + x**3*log(x)**2 + 2*x**3*log(x)*log(y(x)) + x**3*log(y(x))**2 + x*log(x)**2 + 2*x*log(x)*log(y(x)) + x*log(y(x))**2 + log(x) + log(y(x)) - 1)*y(x)/x,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out