Internal
problem
ID
[12258]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
963
Date
solved
:
Wednesday, October 01, 2025 at 01:24:08 AM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)]`], _Abel]
ode:=diff(y(x),x) = 1/4*(-4*x*cos(x)+4*sin(x)*x^2+4*x+4+4*y(x)^2+8*y(x)*cos(x)*x-8*x*y(x)+2*x^2*cos(2*x)+6*x^2-8*x^2*cos(x)+4*y(x)^3+12*y(x)^2*cos(x)*x-12*x*y(x)^2+6*y(x)*x^2*cos(2*x)+18*x^2*y(x)-24*y(x)*cos(x)*x^2+x^3*cos(3*x)+15*x^3*cos(x)-6*x^3*cos(2*x)-10*x^3)/x; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (1 + x + (3*x^2)/2 - (5*x^3)/2 - x*Cos[x] - 2*x^2*Cos[x] + (15*x^3*Cos[x])/4 + (x^2*Cos[2*x])/2 - (3*x^3*Cos[2*x])/2 + (x^3*Cos[3*x])/4 + x^2*Sin[x] - 2*x*y[x] + (9*x^2*y[x])/2 + 2*x*Cos[x]*y[x] - 6*x^2*Cos[x]*y[x] + (3*x^2*Cos[2*x]*y[x])/2 + y[x]^2 - 3*x*y[x]^2 + 3*x*Cos[x]*y[x]^2 + y[x]^3)/x; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (15*x**3*cos(x) - 6*x**3*cos(2*x) + x**3*cos(3*x) - 10*x**3 - 24*x**2*y(x)*cos(x) + 6*x**2*y(x)*cos(2*x) + 18*x**2*y(x) + 4*x**2*sin(x) - 8*x**2*cos(x) + 2*x**2*cos(2*x) + 6*x**2 + 12*x*y(x)**2*cos(x) - 12*x*y(x)**2 + 8*x*y(x)*cos(x) - 8*x*y(x) - 4*x*cos(x) + 4*x + 4*y(x)**3 + 4*y(x)**2 + 4)/(4*x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out