Internal
problem
ID
[12259]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
964
Date
solved
:
Wednesday, October 01, 2025 at 01:24:26 AM
CAS
classification
:
[_rational]
ode:=diff(y(x),x) = -8*x*(a-1)*(a+1)/(8+2*y(x)^4+y(x)^6-8*a^2+4*a^4*y(x)^2*x^2+3*y(x)^4*x^2-2*y(x)^4*a^2-9*y(x)^2*a^2*x^4-3*a^6*y(x)^2*x^4+9*y(x)^2*a^4*x^4+3*a^4*y(x)^4*x^2-6*y(x)^4*a^2*x^2-2*a^6*x^4+6*a^4*x^4-a^2*y(x)^6+a^8*x^6-4*a^6*x^6+6*a^4*x^6-4*a^2*x^6+3*x^4*y(x)^2+4*x^2*y(x)^2-6*a^2*x^4-8*y(x)^2*a^2*x^2-8*y(x)+2*x^4+x^6); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (-8*(-1 + a)*(1 + a)*x)/(8 - 8*a^2 + 2*x^4 - 6*a^2*x^4 + 6*a^4*x^4 - 2*a^6*x^4 + x^6 - 4*a^2*x^6 + 6*a^4*x^6 - 4*a^6*x^6 + a^8*x^6 - 8*y[x] + 4*x^2*y[x]^2 - 8*a^2*x^2*y[x]^2 + 4*a^4*x^2*y[x]^2 + 3*x^4*y[x]^2 - 9*a^2*x^4*y[x]^2 + 9*a^4*x^4*y[x]^2 - 3*a^6*x^4*y[x]^2 + 2*y[x]^4 - 2*a^2*y[x]^4 + 3*x^2*y[x]^4 - 6*a^2*x^2*y[x]^4 + 3*a^4*x^2*y[x]^4 + y[x]^6 - a^2*y[x]^6); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(8*x*(a - 1)*(a + 1)/(a**8*x**6 - 4*a**6*x**6 - 3*a**6*x**4*y(x)**2 - 2*a**6*x**4 + 6*a**4*x**6 + 9*a**4*x**4*y(x)**2 + 6*a**4*x**4 + 3*a**4*x**2*y(x)**4 + 4*a**4*x**2*y(x)**2 - 4*a**2*x**6 - 9*a**2*x**4*y(x)**2 - 6*a**2*x**4 - 6*a**2*x**2*y(x)**4 - 8*a**2*x**2*y(x)**2 - a**2*y(x)**6 - 2*a**2*y(x)**4 - 8*a**2 + x**6 + 3*x**4*y(x)**2 + 2*x**4 + 3*x**2*y(x)**4 + 4*x**2*y(x)**2 + y(x)**6 + 2*y(x)**4 - 8*y(x) + 8) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out