54.2.386 problem 965

Internal problem ID [12260]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 965
Date solved : Wednesday, October 01, 2025 at 01:24:29 AM
CAS classification : [[_homogeneous, `class D`]]

\begin{align*} y^{\prime }&=\frac {-y \sin \left (\frac {y}{x}\right )+y \sin \left (\frac {3 y}{2 x}\right ) \cos \left (\frac {y}{2 x}\right )+y \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )+2 \sin \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x +2 \sin \left (\frac {y}{x}\right ) x^{3} \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )+2 \sin \left (\frac {y}{x}\right ) x^{4} \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right )}{2 \cos \left (\frac {y}{x}\right ) \cos \left (\frac {y}{2 x}\right ) \sin \left (\frac {y}{2 x}\right ) x} \end{align*}
Maple. Time used: 0.011 (sec). Leaf size: 25
ode:=diff(y(x),x) = 1/2*(-y(x)*sin(y(x)/x)+y(x)*sin(3/2*y(x)/x)*cos(1/2*y(x)/x)+y(x)*cos(1/2*y(x)/x)*sin(1/2*y(x)/x)+2*sin(y(x)/x)*cos(1/2*y(x)/x)*sin(1/2*y(x)/x)*x+2*sin(y(x)/x)*x^3*cos(1/2*y(x)/x)*sin(1/2*y(x)/x)+2*sin(y(x)/x)*x^4*cos(1/2*y(x)/x)*sin(1/2*y(x)/x))/cos(y(x)/x)/cos(1/2*y(x)/x)/sin(1/2*y(x)/x)/x; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\arccos \left (c_1 \,x^{2} {\mathrm e}^{x^{2}+\frac {2}{3} x^{3}}+1\right ) x}{2} \]
Mathematica. Time used: 33.842 (sec). Leaf size: 34
ode=D[y[x],x] == (Csc[y[x]/(2*x)]*Sec[y[x]/(2*x)]*Sec[y[x]/x]*(x*Cos[y[x]/(2*x)]*Sin[y[x]/(2*x)]*Sin[y[x]/x] + x^3*Cos[y[x]/(2*x)]*Sin[y[x]/(2*x)]*Sin[y[x]/x] + x^4*Cos[y[x]/(2*x)]*Sin[y[x]/(2*x)]*Sin[y[x]/x] + (Cos[y[x]/(2*x)]*Sin[y[x]/(2*x)]*y[x])/2 - (Sin[y[x]/x]*y[x])/2 + (Cos[y[x]/(2*x)]*Sin[(3*y[x])/(2*x)]*y[x])/2))/x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to x \arcsin \left (x e^{\frac {x^3}{3}+\frac {x^2}{2}+c_1}\right )\\ y(x)&\to 0 \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - (2*x**4*sin(y(x)/(2*x))*sin(y(x)/x)*cos(y(x)/(2*x)) + 2*x**3*sin(y(x)/(2*x))*sin(y(x)/x)*cos(y(x)/(2*x)) + 2*x*sin(y(x)/(2*x))*sin(y(x)/x)*cos(y(x)/(2*x)) + y(x)*sin(y(x)/(2*x))*cos(y(x)/(2*x)) - y(x)*sin(y(x)/x) + y(x)*sin(3*y(x)/(2*x))*cos(y(x)/(2*x)))/(2*x*sin(y(x)/(2*x))*cos(y(x)/(2*x))*cos(y(x)/x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out