Internal
problem
ID
[12407]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1126
Date
solved
:
Wednesday, October 01, 2025 at 01:44:32 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x*diff(diff(y(x),x),x)+(2*a*x^3-1)*diff(y(x),x)+(a^2*x^3+a)*x^2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],{x,2}]+(2*a*x^3-1)*D[y[x],x]+(a^2*x^3+a)*x^2*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(x**2*(a**2*x**3 + a)*y(x) + x*Derivative(y(x), (x, 2)) + (2*a*x**3 - 1)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False