Internal
problem
ID
[12408]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1127
Date
solved
:
Wednesday, October 01, 2025 at 01:44:33 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x*diff(diff(y(x),x),x)+(2*a*x*ln(x)+1)*diff(y(x),x)+(a^2*x*ln(x)^2+a*ln(x)+a)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(a + a*Log[x] + a^2*x*Log[x]^2)*y[x] + (1 + 2*a*x*Log[x])*D[y[x],x] + x*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(x*Derivative(y(x), (x, 2)) + (2*a*x*log(x) + 1)*Derivative(y(x), x) + (a**2*x*log(x)**2 + a*log(x) + a)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-a**2*x*y(x)*log(x)**2 - a*y(x)*log(x) - a*y(x) - x*Derivative(y(x), (x, 2)))/(2*a*x*log(x) + 1) cannot be solved by the factorable group method