Internal
problem
ID
[12518]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1239
Date
solved
:
Friday, October 03, 2025 at 03:19:43 AM
CAS
classification
:
[_Gegenbauer]
ode:=(x^2-1)*diff(diff(y(x),x),x)+2*x*diff(y(x),x)-l*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=-(l*y[x]) + 2*x*D[y[x],x] + (-1 + x^2)*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") l = symbols("l") y = Function("y") ode = Eq(-l*y(x) + 2*x*Derivative(y(x), x) + (x**2 - 1)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False