54.3.224 problem 1240

Internal problem ID [12519]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1240
Date solved : Friday, October 03, 2025 at 03:19:44 AM
CAS classification : [_Gegenbauer]

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+2 x y^{\prime }-v \left (v +1\right ) y&=0 \end{align*}
Maple. Time used: 0.018 (sec). Leaf size: 15
ode:=(x^2-1)*diff(diff(y(x),x),x)+2*x*diff(y(x),x)-v*(v+1)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \operatorname {LegendreP}\left (v , x\right )+c_2 \operatorname {LegendreQ}\left (v , x\right ) \]
Mathematica. Time used: 0.017 (sec). Leaf size: 18
ode=-(v*(1 + v)*y[x]) + 2*x*D[y[x],x] + (-1 + x^2)*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 \operatorname {LegendreP}(v,x)+c_2 \operatorname {LegendreQ}(v,x) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
v = symbols("v") 
y = Function("y") 
ode = Eq(-v*(v + 1)*y(x) + 2*x*Derivative(y(x), x) + (x**2 - 1)*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False