Internal
problem
ID
[12540]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1261
Date
solved
:
Friday, October 03, 2025 at 03:30:52 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x*(x+2)*diff(diff(y(x),x),x)+2*(n+1+(n+1-2*l)*x-l*x^2)*diff(y(x),x)+(2*l*(p-n-1)*x+2*p*l+m)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(m + 2*l*p + 2*l*(-1 - n + p)*x)*y[x] + 2*(1 + n + (1 - 2*l + n)*x - l*x^2)*D[y[x],x] + x*(2 + x)*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") l = symbols("l") m = symbols("m") n = symbols("n") p = symbols("p") y = Function("y") ode = Eq(x*(x + 2)*Derivative(y(x), (x, 2)) + (2*l*p + 2*l*x*(-n + p - 1) + m)*y(x) + (-2*l*x**2 + 2*n + 2*x*(-2*l + n + 1) + 2)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False