Internal
problem
ID
[12541]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1262
Date
solved
:
Wednesday, October 01, 2025 at 01:57:25 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(1+x)^2*diff(diff(y(x),x),x)+(x^2+x-1)*diff(y(x),x)-(x+2)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(-2 - x)*y[x] + (-1 + x + x^2)*D[y[x],x] + (1 + x)^2*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x + 1)**2*Derivative(y(x), (x, 2)) - (x + 2)*y(x) + (x**2 + x - 1)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False