Internal
problem
ID
[12543]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1264
Date
solved
:
Wednesday, October 01, 2025 at 01:57:50 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(x^2+3*x+4)*diff(diff(y(x),x),x)+(x^2+x+1)*diff(y(x),x)-(2*x+3)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(-3 - 2*x)*y[x] + (1 + x + x^2)*D[y[x],x] + (4 + 3*x + x^2)*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-2*x - 3)*y(x) + (x**2 + x + 1)*Derivative(y(x), x) + (x**2 + 3*x + 4)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False