Internal
problem
ID
[12544]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1265
Date
solved
:
Friday, October 03, 2025 at 03:30:53 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(x-1)*(x-2)*diff(diff(y(x),x),x)-(2*x-3)*diff(y(x),x)+y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=y[x] - (-3 + 2*x)*D[y[x],x] + (-2 + x)*(-1 + x)*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x - 2)*(x - 1)*Derivative(y(x), (x, 2)) - (2*x - 3)*Derivative(y(x), x) + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False