Internal
problem
ID
[12602]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1324
Date
solved
:
Wednesday, October 01, 2025 at 02:12:49 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x) = 1/x*(5*x-4)/(x-1)*diff(y(x),x)-(9*x-6)/x^2/(x-1)*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}] == -(((-6 + 9*x)*y[x])/((-1 + x)*x^2)) + ((-4 + 5*x)*D[y[x],x])/((-1 + x)*x); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), (x, 2)) - (5*x - 4)*Derivative(y(x), x)/(x*(x - 1)) + (9*x - 6)*y(x)/(x**2*(x - 1)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False