Internal
problem
ID
[12603]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1325
Date
solved
:
Friday, October 03, 2025 at 03:41:14 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x) = -((b+1+a)*x+alpha+beta-1)/x/(x-1)*diff(y(x),x)-(a*b*x-alpha*beta)/x^2/(x-1)*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}] == -(((-(\[Alpha]*\[Beta]) + a*b*x)*y[x])/((-1 + x)*x^2)) - ((-1 + \[Alpha] + \[Beta] + (1 + a + b)*x)*D[y[x],x])/((-1 + x)*x); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") Alpha = symbols("Alpha") BETA = symbols("BETA") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(Derivative(y(x), (x, 2)) + (Alpha + BETA + x*(a + b + 1) - 1)*Derivative(y(x), x)/(x*(x - 1)) + (-Alpha*BETA + a*b*x)*y(x)/(x**2*(x - 1)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
ValueError : Expected Expr or iterable but got None