Internal
problem
ID
[12616]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1338
Date
solved
:
Wednesday, October 01, 2025 at 02:15:57 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x) = 1/3/x*(6*x-1)/(x-2)*diff(y(x),x)+1/3/x^2/(x-2)*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}] == y[x]/(3*(-2 + x)*x^2) + ((-1 + 6*x)*D[y[x],x])/(3*(-2 + x)*x); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), (x, 2)) - (6*x - 1)*Derivative(y(x), x)/(3*x*(x - 2)) - y(x)/(3*x**2*(x - 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False