Internal
problem
ID
[12617]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1339
Date
solved
:
Friday, October 03, 2025 at 03:43:22 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x) = -(a*(2+b)*x^2+(c-d+1)*x)/(a*x+1)/x^2*diff(y(x),x)-(a*b*x-c*d)/(a*x+1)/x^2*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}] == -(((-(c*d) + a*b*x)*y[x])/(x^2*(1 + a*x))) - (((1 + c - d)*x + a*(2 + b)*x^2)*D[y[x],x])/(x^2*(1 + a*x)); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") d = symbols("d") y = Function("y") ode = Eq(Derivative(y(x), (x, 2)) + (a*b*x - c*d)*y(x)/(x**2*(a*x + 1)) + (a*x**2*(b + 2) + x*(c - d + 1))*Derivative(y(x), x)/(x**2*(a*x + 1)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
ValueError : Expected Expr or iterable but got None