Internal
problem
ID
[12619]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1341
Date
solved
:
Friday, October 03, 2025 at 03:43:24 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x) = -1/x*(2*a*x+b)/(a*x+b)*diff(y(x),x)-(a*v*x-b)/(a*x+b)/x^2*y(x)+A*x; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}] == A*x - ((-b + a*v*x)*y[x])/(x^2*(b + a*x)) - ((b + 2*a*x)*D[y[x],x])/(x*(b + a*x)); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") A = symbols("A") a = symbols("a") b = symbols("b") v = symbols("v") y = Function("y") ode = Eq(-A*x + Derivative(y(x), (x, 2)) + (2*a*x + b)*Derivative(y(x), x)/(x*(a*x + b)) + (a*v*x - b)*y(x)/(x**2*(a*x + b)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (A*a*x**4 + A*b*x**3 - a*v*x*y(x) - a*x**3*Derivative(y(x), (x, 2)) - b*x**2*Derivative(y(x), (x, 2)) + b*y(x))/(x*(2*a*x + b)) cannot be solved by the factorable group method