Internal
problem
ID
[12618]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1340
Date
solved
:
Wednesday, October 01, 2025 at 02:16:00 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x) = 2/x*(a*x+2*b)/(a*x+b)*diff(y(x),x)-(2*a*x+6*b)/(a*x+b)/x^2*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}] == -(((6*b + 2*a*x)*y[x])/(x^2*(b + a*x))) + (2*(2*b + a*x)*D[y[x],x])/(x*(b + a*x)); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(Derivative(y(x), (x, 2)) - (2*a*x + 4*b)*Derivative(y(x), x)/(x*(a*x + b)) + (2*a*x + 6*b)*y(x)/(x**2*(a*x + b)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False