Internal
problem
ID
[12648]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1370
Date
solved
:
Wednesday, October 01, 2025 at 02:18:56 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
ode:=diff(diff(y(x),x),x) = -2*x/(x^2-1)*diff(y(x),x)+a^2/(x^2-1)^2*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}] == (a^2*y[x])/(-1 + x^2)^2 - (2*x*D[y[x],x])/(-1 + x^2); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(-a**2*y(x)/(x**2 - 1)**2 + 2*x*Derivative(y(x), x)/(x**2 - 1) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False