Internal
problem
ID
[12649]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1371
Date
solved
:
Friday, October 03, 2025 at 03:45:33 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x) = -2*x/(x^2-1)*diff(y(x),x)-(-a^2-lambda*(x^2-1))/(x^2-1)^2*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}] == -(((-a^2 - \[Lambda]*(-1 + x^2))*y[x])/(-1 + x^2)^2) - (2*x*D[y[x],x])/(-1 + x^2); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") lambda_ = symbols("lambda_") y = Function("y") ode = Eq(2*x*Derivative(y(x), x)/(x**2 - 1) + (-a**2 - lambda_*(x**2 - 1))*y(x)/(x**2 - 1)**2 + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False