Internal
problem
ID
[12652]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1374
Date
solved
:
Friday, October 03, 2025 at 03:45:37 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x) = 2*x*(2*a-1)/(x^2-1)*diff(y(x),x)-(x^2*(2*a*(2*a-1)-v*(v+1))+2*a+v*(v+1))/(x^2-1)^2*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}] == -(((2*a + v*(1 + v) + (2*a*(-1 + 2*a) - v*(1 + v))*x^2)*y[x])/(-1 + x^2)^2) + (2*(-1 + 2*a)*x*D[y[x],x])/(-1 + x^2); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") v = symbols("v") y = Function("y") ode = Eq(-2*x*(2*a - 1)*Derivative(y(x), x)/(x**2 - 1) + Derivative(y(x), (x, 2)) + (2*a + v*(v + 1) + x**2*(2*a*(2*a - 1) - v*(v + 1)))*y(x)/(x**2 - 1)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
False