Internal
problem
ID
[12653]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1375
Date
solved
:
Friday, October 03, 2025 at 03:45:38 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x) = -2*x/(x^2-1)*(n+1-2*a)*diff(y(x),x)-(4*a*x^2*(a-n)-(x^2-1)*(2*a+(v-n)*(v+n+1)))/(x^2-1)^2*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}] == -(((4*a*(a - n)*x^2 - (2*a + (-n + v)*(1 + n + v))*(-1 + x^2))*y[x])/(-1 + x^2)^2) - (2*(1 - 2*a + n)*x*D[y[x],x])/(-1 + x^2); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") n = symbols("n") v = symbols("v") y = Function("y") ode = Eq(2*x*(-2*a + n + 1)*Derivative(y(x), x)/(x**2 - 1) + Derivative(y(x), (x, 2)) + (4*a*x**2*(a - n) - (2*a + (-n + v)*(n + v + 1))*(x**2 - 1))*y(x)/(x**2 - 1)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
False