Internal
problem
ID
[12656]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1378
Date
solved
:
Wednesday, October 01, 2025 at 02:19:10 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x) = -2/x*(x^2-1)/(x-1)^2*diff(y(x),x)-(-2*x^2+2*x+2)/x^2/(x-1)^2*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}] == -(((2 + 2*x - 2*x^2)*y[x])/((-1 + x)^2*x^2)) - (2*(-1 + x^2)*D[y[x],x])/((-1 + x)^2*x); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), (x, 2)) + (2*x**2 - 2)*Derivative(y(x), x)/(x*(x - 1)**2) + (-2*x**2 + 2*x + 2)*y(x)/(x**2*(x - 1)**2),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False