Internal
problem
ID
[12657]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1379
Date
solved
:
Wednesday, October 01, 2025 at 02:19:11 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x) = 12/(1+x)^2/(x^2+2*x+3)*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}] == (12*y[x])/((1 + x)^2*(3 + 2*x + x^2)); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), (x, 2)) - 12*y(x)/((x + 1)**2*(x**2 + 2*x + 3)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), (x, 2)) - 12*y(x)/((x + 1)**2*(x**2 + 2*x + 3)) cannot be solved by the hypergeometric method