Internal
problem
ID
[12691]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1413
Date
solved
:
Wednesday, October 01, 2025 at 02:20:08 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x) = 1/x/(ln(x)-1)*diff(y(x),x)-1/x^2/(ln(x)-1)*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}] == -(y[x]/(x^2*(-1 + Log[x]))) + D[y[x],x]/(x*(-1 + Log[x])); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), (x, 2)) - Derivative(y(x), x)/(x*(log(x) - 1)) + y(x)/(x**2*(log(x) - 1)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (x**2*(log(x) - 1)*Derivative(y(x), (x, 2)) + y(x))/x cannot be solved by the factorable group method