54.3.397 problem 1414

Internal problem ID [12692]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1414
Date solved : Friday, October 03, 2025 at 03:46:13 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }&=-\frac {\left (-a^{2} \sinh \left (x \right )^{2}-n \left (n -1\right )\right ) y}{\sinh \left (x \right )^{2}} \end{align*}
Maple. Time used: 0.223 (sec). Leaf size: 82
ode:=diff(diff(y(x),x),x) = -(-a^2*sinh(x)^2-n*(n-1))/sinh(x)^2*y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\sqrt {\cosh \left (x \right )}\, \sinh \left (x \right )^{\frac {1}{2}+n} \left (\cosh \left (x \right ) \operatorname {hypergeom}\left (\left [\frac {1}{2}-\frac {a}{2}+\frac {n}{2}, \frac {1}{2}+\frac {a}{2}+\frac {n}{2}\right ], \left [\frac {3}{2}\right ], \frac {\cosh \left (2 x \right )}{2}+\frac {1}{2}\right ) c_2 +\operatorname {hypergeom}\left (\left [-\frac {a}{2}+\frac {n}{2}, \frac {a}{2}+\frac {n}{2}\right ], \left [\frac {1}{2}\right ], \frac {\cosh \left (2 x \right )}{2}+\frac {1}{2}\right ) c_1 \right )}{\sqrt {\sinh \left (2 x \right )}} \]
Mathematica. Time used: 0.629 (sec). Leaf size: 127
ode=D[y[x],{x,2}] == -(Csch[x]^2*((1 - n)*n - a^2*Sinh[x]^2)*y[x]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {(-1)^{-n} \left (-\text {sech}^2(x)\right )^{a/2} \tanh ^2(x)^{-\frac {n}{2}-\frac {1}{4}} \left (c_1 (-1)^n \tanh ^2(x)^{n+\frac {1}{2}} \operatorname {Hypergeometric2F1}\left (\frac {a+n}{2},\frac {1}{2} (a+n+1),n+\frac {1}{2},\tanh ^2(x)\right )+i c_2 \tanh ^2(x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2} (a-n+1),\frac {1}{2} (a-n+2),\frac {3}{2}-n,\tanh ^2(x)\right )\right )}{\sqrt {\tanh (x)}} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
n = symbols("n") 
y = Function("y") 
ode = Eq((-a**2*sinh(x)**2 - n*(n - 1))*y(x)/sinh(x)**2 + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : solve: Cannot solve (-a**2*sinh(x)**2 - n*(n - 1))*y(x)/sinh(x)**2 + Derivative(y(x), (x, 2))