54.3.398 problem 1415

Internal problem ID [12693]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1415
Date solved : Friday, October 03, 2025 at 03:46:15 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }&=-\frac {2 n \cosh \left (x \right ) y^{\prime }}{\sinh \left (x \right )}-\left (-a^{2}+n^{2}\right ) y \end{align*}
Maple. Time used: 0.082 (sec). Leaf size: 36
ode:=diff(diff(y(x),x),x) = -2*n/sinh(x)*cosh(x)*diff(y(x),x)-(-a^2+n^2)*y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sinh \left (x \right )^{\frac {1}{2}-n} \left (c_1 \operatorname {LegendreP}\left (a -\frac {1}{2}, -\frac {1}{2}+n , \cosh \left (x \right )\right )+c_2 \operatorname {LegendreQ}\left (a -\frac {1}{2}, -\frac {1}{2}+n , \cosh \left (x \right )\right )\right ) \]
Mathematica. Time used: 1.068 (sec). Leaf size: 149
ode=D[y[x],{x,2}] == (a^2 - n^2)*y[x] - 2*n*Coth[x]*D[y[x],x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {(-1)^{-n} \left (-\text {sech}^2(x)\right )^{\frac {a+1}{2}} \tanh ^2(x)^{-\frac {n}{2}-\frac {1}{4}} \left (c_1 (-1)^n \tanh ^2(x)^{n+\frac {1}{2}} \operatorname {Hypergeometric2F1}\left (\frac {a+n}{2},\frac {1}{2} (a+n+1),n+\frac {1}{2},\tanh ^2(x)\right )+i c_2 \tanh ^2(x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2} (a-n+1),\frac {1}{2} (a-n+2),\frac {3}{2}-n,\tanh ^2(x)\right )\right ) \exp \left (-\int \sinh (x) \cosh (x) \left (n \coth ^2(x)-1\right ) \, d\tanh (x)\right )}{\sqrt {\tanh (x)}} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
n = symbols("n") 
y = Function("y") 
ode = Eq(2*n*cosh(x)*Derivative(y(x), x)/sinh(x) + (-a**2 + n**2)*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) + (-a**2*y(x) + n**2*y(x) + Derivative(y(x), (x, 2)))*tanh(x)/(2*n) cannot be solved by the factorable group method