Internal
problem
ID
[12697]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1419
Date
solved
:
Wednesday, October 01, 2025 at 02:20:17 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x) = -(sin(x)*x^2-2*x*cos(x))/x^2/cos(x)*diff(y(x),x)-(2*cos(x)-x*sin(x))/x^2/cos(x)*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}] == -((Sec[x]*(2*x*Cos[x] - x*Sin[x])*y[x])/x^2) - (Sec[x]*(-2*x*Cos[x] + x^2*Sin[x])*D[y[x],x])/x^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), (x, 2)) + (-x*sin(x) + 2*cos(x))*y(x)/(x**2*cos(x)) + (x**2*sin(x) - 2*x*cos(x))*Derivative(y(x), x)/(x**2*cos(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False