Internal
problem
ID
[12698]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1420
Date
solved
:
Friday, October 03, 2025 at 03:46:19 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=cos(x)^2*diff(diff(y(x),x),x)-(a*cos(x)^2+n*(n-1))*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(-((-1 + n)*n) - a*Cos[x]^2)*y[x] + Cos[x]^2*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") n = symbols("n") y = Function("y") ode = Eq((-a*cos(x)**2 - n*(n - 1))*y(x) + cos(x)**2*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False