54.3.404 problem 1421

Internal problem ID [12699]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1421
Date solved : Wednesday, October 01, 2025 at 02:20:20 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }&=-\frac {a \left (n -1\right ) \sin \left (2 a x \right ) y^{\prime }}{\cos \left (a x \right )^{2}}-\frac {n \,a^{2} \left (\left (n -1\right ) \sin \left (a x \right )^{2}+\cos \left (a x \right )^{2}\right ) y}{\cos \left (a x \right )^{2}} \end{align*}
Maple. Time used: 0.005 (sec). Leaf size: 28
ode:=diff(diff(y(x),x),x) = -a*(n-1)*sin(2*a*x)/cos(a*x)^2*diff(y(x),x)-n*a^2*((n-1)*sin(a*x)^2+cos(a*x)^2)/cos(a*x)^2*y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sec \left (a x \right )^{-n +1} \left (c_1 \sin \left (a x \right )+c_2 \cos \left (a x \right )\right ) \]
Mathematica. Time used: 0.125 (sec). Leaf size: 65
ode=D[y[x],{x,2}] == -(a^2*n*Sec[a*x]^2*(Cos[a*x]^2 + (-1 + n)*Sin[a*x]^2)*y[x]) - a*(-1 + n)*Sec[a*x]^2*Sin[2*a*x]*D[y[x],x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {2^{-n} \left (2 a c_1-i c_2 e^{2 i a x}\right ) \left (e^{-i a x}+e^{i a x}\right )^n}{a \left (1+e^{2 i a x}\right )} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
n = symbols("n") 
y = Function("y") 
ode = Eq(a**2*n*((n - 1)*sin(a*x)**2 + cos(a*x)**2)*y(x)/cos(a*x)**2 + a*(n - 1)*sin(2*a*x)*Derivative(y(x), x)/cos(a*x)**2 + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False