Internal
problem
ID
[12699]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1421
Date
solved
:
Wednesday, October 01, 2025 at 02:20:20 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x) = -a*(n-1)*sin(2*a*x)/cos(a*x)^2*diff(y(x),x)-n*a^2*((n-1)*sin(a*x)^2+cos(a*x)^2)/cos(a*x)^2*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}] == -(a^2*n*Sec[a*x]^2*(Cos[a*x]^2 + (-1 + n)*Sin[a*x]^2)*y[x]) - a*(-1 + n)*Sec[a*x]^2*Sin[2*a*x]*D[y[x],x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") n = symbols("n") y = Function("y") ode = Eq(a**2*n*((n - 1)*sin(a*x)**2 + cos(a*x)**2)*y(x)/cos(a*x)**2 + a*(n - 1)*sin(2*a*x)*Derivative(y(x), x)/cos(a*x)**2 + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False