Internal
problem
ID
[12737]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
3,
linear
third
order
Problem
number
:
1468
Date
solved
:
Friday, October 03, 2025 at 03:47:16 AM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=diff(diff(diff(y(x),x),x),x)-6*x*diff(diff(y(x),x),x)+2*(4*x^2+2*a-1)*diff(y(x),x)-8*y(x)*a*x = 0; dsolve(ode,y(x), singsol=all);
ode=-8*a*x*y[x] + 2*(-1 + 2*a + 4*x^2)*D[y[x],x] - 6*x*D[y[x],{x,2}] + Derivative[3][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(-8*a*x*y(x) - 6*x*Derivative(y(x), (x, 2)) + (4*a + 8*x**2 - 2)*Derivative(y(x), x) + Derivative(y(x), (x, 3)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (8*a*x*y(x) + 6*x*Derivative(y(x), (x, 2)) - Derivative(y(x), (x, 3)))/(2*(2*a + 4*x**2 - 1)) cannot be solved by the factorable group method