Internal
problem
ID
[12738]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
3,
linear
third
order
Problem
number
:
1469
Date
solved
:
Friday, October 03, 2025 at 03:47:16 AM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=diff(diff(diff(y(x),x),x),x)+3*a*x*diff(diff(y(x),x),x)+3*a^2*x^2*diff(y(x),x)+a^3*x^3*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=a^3*x^3*y[x] + 3*a^2*x^2*D[y[x],x] + 3*a*x*D[y[x],{x,2}] + Derivative[3][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(a**3*x**3*y(x) + 3*a**2*x**2*Derivative(y(x), x) + 3*a*x*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE a*x*y(x)/3 + Derivative(y(x), x) + Derivative(y(x), (x, 2))/(a*x) + Derivative(y(x), (x, 3))/(3*a**2*x**2) cannot be solved by the factorable group method