Internal
problem
ID
[12763]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
3,
linear
third
order
Problem
number
:
1497
Date
solved
:
Friday, October 03, 2025 at 03:47:20 AM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(diff(y(x),x),x),x)-3*(p+q)*x*diff(diff(y(x),x),x)+3*p*(3*q+1)*diff(y(x),x)-x^2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=-(x^2*y[x]) + 3*p*(1 + 3*q)*D[y[x],x] - 3*(p + q)*x*D[y[x],{x,2}] + x^2*Derivative[3][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") p = symbols("p") q = symbols("q") y = Function("y") ode = Eq(3*p*(3*q + 1)*Derivative(y(x), x) - x**2*y(x) + x**2*Derivative(y(x), (x, 3)) - x*(3*p + 3*q)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - x*(3*p*Derivative(y(x), (x, 2)) + 3*q*Derivative(y(x), (x, 2)) + x*y(x) - x*Derivative(y(x), (x, 3)))/(3*p*(3*q + 1)) cannot be solved by the factorable group method