Internal
problem
ID
[12764]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
3,
linear
third
order
Problem
number
:
1498
Date
solved
:
Friday, October 03, 2025 at 03:47:20 AM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(diff(y(x),x),x),x)-2*(n+1)*x*diff(diff(y(x),x),x)+(a*x^2+6*n)*diff(y(x),x)-2*y(x)*a*x = 0; dsolve(ode,y(x), singsol=all);
ode=-2*a*x*y[x] + (6*n + a*x^2)*D[y[x],x] - 2*(1 + n)*x*D[y[x],{x,2}] + x^2*Derivative[3][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") n = symbols("n") y = Function("y") ode = Eq(-2*a*x*y(x) + x**2*Derivative(y(x), (x, 3)) - x*(2*n + 2)*Derivative(y(x), (x, 2)) + (a*x**2 + 6*n)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -x*(2*a*y(x) + 2*n*Derivative(y(x), (x, 2)) - x*Derivative(y(x), (x, 3)) + 2*Derivative(y(x), (x, 2)))/(a*x**2 + 6*n) + Derivative(y(x), x) cannot be solved by the factorable group method