Internal
problem
ID
[12781]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
3,
linear
third
order
Problem
number
:
1517
Date
solved
:
Wednesday, October 01, 2025 at 02:21:48 AM
CAS
classification
:
[[_3rd_order, _linear, _nonhomogeneous]]
ode:=x^3*diff(diff(diff(y(x),x),x),x)+x^2*diff(diff(y(x),x),x)+ln(x)+2*x*diff(y(x),x)-y(x)-2*x^3 = 0; dsolve(ode,y(x), singsol=all);
ode=-2*x^3 + Log[x] - y[x] + 2*x*D[y[x],x] + x^2*D[y[x],{x,2}] + x^3*Derivative[3][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*Derivative(y(x), (x, 3)) - 2*x**3 + x**2*Derivative(y(x), (x, 2)) + 2*x*Derivative(y(x), x) - y(x) + log(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)