Internal
problem
ID
[12782]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
3,
linear
third
order
Problem
number
:
1518
Date
solved
:
Friday, October 03, 2025 at 03:47:23 AM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=(x^2+1)*x*diff(diff(diff(y(x),x),x),x)+3*(2*x^2+1)*diff(diff(y(x),x),x)-12*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=-12*y[x] + 3*(1 + 2*x^2)*D[y[x],{x,2}] + x*(1 + x^2)*Derivative[3][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(x**2 + 1)*Derivative(y(x), (x, 3)) + (6*x**2 + 3)*Derivative(y(x), (x, 2)) - 12*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : solve: Cannot solve x*(x**2 + 1)*Derivative(y(x), (x, 3)) + (6*x**2 + 3)*Derivative(y(x), (x, 2)) - 12*y(x)