Internal
problem
ID
[12783]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
3,
linear
third
order
Problem
number
:
1519
Date
solved
:
Friday, October 03, 2025 at 03:47:24 AM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=(x+3)*x^2*diff(diff(diff(y(x),x),x),x)-3*x*(x+2)*diff(diff(y(x),x),x)+6*(1+x)*diff(y(x),x)-6*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=-6*y[x] + 6*(1 + x)*D[y[x],x] - 3*x*(2 + x)*D[y[x],{x,2}] + x^2*(3 + x)*Derivative[3][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*(x + 3)*Derivative(y(x), (x, 3)) - 3*x*(x + 2)*Derivative(y(x), (x, 2)) + (6*x + 6)*Derivative(y(x), x) - 6*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-x**3*Derivative(y(x), (x, 3))/6 + x**2*Derivative(y(x), (x, 2))/2 - x**2*Derivative(y(x), (x, 3))/2 + x*Derivative(y(x), (x, 2)) + y(x))/(x + 1) cannot be solved by the factorable group method