Internal
problem
ID
[12925]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
6,
non-linear
second
order
Problem
number
:
1685
(book
6.94)
Date
solved
:
Wednesday, October 01, 2025 at 02:46:16 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=2*x^3*diff(diff(y(x),x),x)+x^2*(9+2*x*y(x))*diff(y(x),x)+b+x*y(x)*(a+3*x*y(x)-2*x^2*y(x)^2) = 0; dsolve(ode,y(x), singsol=all);
ode=b + x*y[x]*(a + 3*x*y[x] - 2*x^2*y[x]^2) + x^2*(9 + 2*x*y[x])*D[y[x],x] + 2*x^3*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(b + 2*x**3*Derivative(y(x), (x, 2)) + x**2*(2*x*y(x) + 9)*Derivative(y(x), x) + x*(a - 2*x**2*y(x)**2 + 3*x*y(x))*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-a*x*y(x) - b + 2*x**3*y(x)**3 - 2*x**3*Derivative(y(x), (x, 2)) - 3*x**2*y(x)**2)/(x**2*(2*x*y(x) + 9)) cannot be solved by the factorable group method