Internal
problem
ID
[12926]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
6,
non-linear
second
order
Problem
number
:
1686
(book
6.95)
Date
solved
:
Wednesday, October 01, 2025 at 02:46:17 AM
CAS
classification
:
[NONE]
ode:=2*(-x^k+4*x^3)*(diff(diff(y(x),x),x)+y(x)*diff(y(x),x)-y(x)^3)-(k*x^(k-1)-12*x^2)*(3*diff(y(x),x)+y(x)^2)+y(x)*a*x+b = 0; dsolve(ode,y(x), singsol=all);
ode=b + a*x*y[x] - (-12*x^2 + k*x^(-1 + k))*(y[x]^2 + 3*D[y[x],x]) + 2*(4*x^3 - x^k)*(-y[x]^3 + y[x]*D[y[x],x] + D[y[x],{x,2}]) == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") k = symbols("k") y = Function("y") ode = Eq(a*x*y(x) + b + (8*x**3 - 2*x**k)*(-y(x)**3 + y(x)*Derivative(y(x), x) + Derivative(y(x), (x, 2))) - (k*x**(k - 1) - 12*x**2)*(y(x)**2 + 3*Derivative(y(x), x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (a*x*y(x) + b - k*x**(k - 1)*y(x)**2 - 8*x**3*y(x)**3 + 8*x**3*Derivative(y(x), (x, 2)) + 12*x**2*y(x)**2 + 2*x**k*y(x)**3 - 2*x**k*Derivative(y(x), (x, 2)))/(3*k*x**(k - 1) - 8*x**3*y(x) - 36*x**2 + 2*x**k*y(x)) cannot be solved by the factorable group method